Abstract

This paper proposes DFFA-Net, a novel differential convolutional neural network designed for underwater optical image dehazing. DFFA-Net is obtained by deeply analyzing the factors that affect the quality of underwater images and combining the underwater light propagation characteristics. DFFA-Net introduces a channel differential module that captures the mutual information between the green and blue channels with respect to the red channel. Additionally, a loss function sensitive to RGB color channels is introduced. Experimental results demonstrate that DFFA-Net achieves state-of-the-art performance in terms of quantitative metrics for single-image dehazing within convolutional neural network-based dehazing models. On the widely-used underwater Underwater Image Enhancement Benchmark (UIEB) image dehazing dataset, DFFA-Net achieves a peak signal-to-noise ratio (PSNR) of 24.2631 and a structural similarity index (SSIM) score of 0.9153. Further, we have deployed DFFA-Net on a self-developed Remotely Operated Vehicle (ROV). In a swimming pool environment, DFFA-Net can process hazy images in real time, providing better visual feedback to the operator. The source code has been open sourced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call