Abstract

DNA fragmenting factor (DFF40), an endonuclease inducing irreversible apoptosis protein, is down-regulated in many types of tumor cells. iRGD is a tumor-penetrating peptide with high affinity to cancer cells overexpressing αVβ3 receptor. The aim of this study was to produce the recombinant DFF40-iRGD protein as a new molecule to selectively induce cytotoxicity in cancer cells and evaluate its biological effects. The three-dimensional structure of DFF40-iRGD was predicted using Modeller software and its interaction with αVβ3 receptor was evaluated by HADDOCK web-server. Recombinant DFF40 and DFF40-iRGD proteins were produced using intein fusion system in Escherichia coli BL21 (DE3). To improve the soluble expression, the inducer concentration, temperature and incubation time were optimized. After purification of DFF40 and DFF40-iRGD using chitin column, the cytotoxic and apoptotic effects of the proteins against MDA-MB-231 (αVβ3 positive) and MCF-7 (αVβ3 negative) cell lines were evaluated using cell viability assay and flow cytometric analysis. The results of molecular docking indicated the proper interaction of DFF40-iRGD with the integrin receptor comparable to iRGD. The optimum conditions of soluble expression of proteins were the induction by 0.5mM and 0.1mM of IPTG for DFF40 and DFF40-iRGD, respectively, at 7°C for 24h. After 48h of incubation, DFF40-iRGD exhibited significantly higher cytotoxic effect against MDA-MB-231 cells than MCF-7 cells as IC50 values of 19.25 and 41nM were found for MDA-MB-231 and MCF-7 cells, respectively. However, DFF40 cytotoxicity was not significantly different in two cell lines. Furthermore, Flow cytometry results showed that the fusion protein can induce remarkably apoptotic cell death in cancer cells. In this study, DFF40-iRGD protein was produced in soluble form and its inhibitory effects on cancer cell survival and induction of apoptosis were established; therefore, it has the potential to be used as a drug candidate for targeted treatment of breast cancer, especially Triple Negative Breast Cancer Cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.