Abstract
Object detection is one of the most important aspects of computer vision, and the use of CNNs for object detection has yielded substantial results in a variety of fields. However, due to the fixed sampling in standard convolution layers, it restricts receptive fields to fixed locations and limits CNNs in geometric transformations. This leads to poor performance of CNNs for slender object detection. In order to achieve better slender object detection accuracy and efficiency, this proposed detector DFAM-DETR not only can adjust the sampling points adaptively, but also enhance the ability to focus on slender object features and extract essential information from global to local on the image through an attention mechanism. This study uses slender objects images from MS-COCO dataset. The experimental results show that DFAM-DETR achieves excellent detection performance on slender objects compared to CNN and transformer-based detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.