Abstract

Safe application of water-insoluble acaricides requires fast release from solid dosage systems into aquatic environments. Dextrin is a water-soluble form of partially hydrolyzed starch, which may be used as matrix material for these systems if retrogradation can be inhibited by the inclusion of nanofillers. Several glycerol-plasticized thermoplastic dextrin-based nanocomposites were prepared with a twin-screw extrusion-compounding process. The nanofillers included a layered double hydroxide (LDH), cellulose nanofibers (CNF), and stearic acid. The time-dependent retrogradation of the compounds was monitored by X-ray diffraction (XRD) and dynamic mechanical thermal analysis (DMA). XRD showed that composite samples that included stearic acid in the formulation led to the formation of an amylose-lipid complex and a stable crystallinity during aging. The most promising nanocomposite included both stearic acid and CNF. It was selected as the carrier material for the water-insoluble acaricide Amitraz. Fast release rates were observed for composites containing 5, 10, and 20% (w/w) of the pesticide. A significant reduction in the particle size of the released Amitraz powder was observed, which is ascribed to the high-temperature compounding procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.