Abstract
Most of the reported bioprocesses carried out by the methylotrophic yeast Pichia pastoris have been performed at laboratory scale using high power inputs and pure oxygen, such conditions are not feasible for industrial large-scale processes. In this study, volumetric mass transfer (kLa) and volumetric gassed power input (Pg/V) were evaluated within values attainable in large-scale production as scale-up criteria for recombinant dextranase production by MutS P. pastoris strain. Cultures were oxygen limited when the volumetric gassed power supply was limited to 2 kW m−3. Specific growth rate, and then dextranase production, increased as kLa and Pg/V did. Meanwhile, specific production and methanol consumption rates were constant, due to the limited methanol condition also achieved at 2 L bioprocesses. The specific dextranase production rate was two times higher than the values previously reported for a Mut+ strain. After a scale-up process, at constant kLa, the specific growth rate was kept at 30 L bioprocess, whereas dextranase production decreased, due to the effect of methanol accumulation. Results obtained at 30 L bioprocesses suggest that even under oxygen-limited conditions, methanol saturated conditions are not adequate to express dextranase with the promoter alcohol oxidase. Bioprocesses developed within feasible and scalable operational conditions are of high interest for the commercial production of recombinant proteins from Pichia pastoris.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Preparative Biochemistry and Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.