Abstract

Dextran is widely exploited in medical products and as a component of drug-delivering nanoparticles (NPs). Here, we tested whether dextran can serve as the main substrate of NPs and form a stable backbone. We tested dextrans with several molecular masses under several synthesis conditions to optimize NP stability. The analysis of the obtained nanoparticles showed that dextran NPs that were synthesized from 70 kDa dextran with a 5% degree of oxidation of the polysaccharide chain and 50% substitution with dodecylamine formed a NP backbone composed of modified dextran subunits, the mean diameter of which in an aqueous environment was around 100 nm. Dextran NPs could be stored in a dry state and reassembled in water. Moreover, we found that different chemical moieties (e.g., drugs such as doxorubicin) can be attached to the dextran NPs via a pH-dependent bond that allows release of the drug with lowering pH. We conclude that dextran NPs are a promising nano drug carrier.

Highlights

  • When Pasteur isolated dextran [1] for the first time in 1861, he certainly did not expect that this simple structure, synthesized by bacteria polysaccharide, could find such wide applications in medicine

  • The discrepancy between the expected and obtained oxidation degrees was consistent with earlier reports [12], in which the authors explained that every molecule of periodate causes the formation of approximately 1.7 aldehyde groups

  • To verify whether the nuclear signal arose from doxorubicin that was already released from the NPs (i.e., Dox-NPs did not enter cell nuclei), we chemically reduced the bond between doxorubicin and NPs to make doxorubicin release impossible

Read more

Summary

Introduction

When Pasteur isolated dextran [1] for the first time in 1861, he certainly did not expect that this simple structure, synthesized by bacteria polysaccharide, could find such wide applications in medicine. Dextran is a combination of glucose molecules, it is extensively used in the medical field, primarily as supplementary material that reduces blood viscosity and prevents the formation of blood clots [2]. Dextran has been applied in nanomedicine, a novel discipline that applies submicron particles for therapeutic and diagnostic purposes. Dextran is used as an alternative for PEGylation to avoid NP and opsonin interactions [4]. Dextran sulfates are used to form NPs via electrostatic interactions with chitosan amine groups [5]. Conjugates of dextran and poly(e-caprolactone) are another popular component of NPs, which are mostly used

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.