Abstract

Understanding the endocytosis and intracellular trafficking of short interfering RNA (siRNA) delivery vehicle complexes remains a critical bottleneck in designing siRNA delivery vehicles for highly active RNA interference (RNAi)-based therapeutics. In this study, we show that dextran functionalization of silica nanoparticles enhanced uptake and intracellular delivery of siRNAs in cultured cells. Using pharmacological inhibitors for endocytotic pathways, we determined that our complexes are endocytosed via a previously unreported mechanism for siRNA delivery in which dextran initiates scavenger receptor-mediated endocytosis through a clathrin/caveolin-independent process. Our findings suggest that siRNA delivery efficiency could be enhanced by incorporating dextran into existing delivery platforms to activate scavenger receptor activity across a variety of target cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.