Abstract

Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS' biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call