Abstract

In pursuit of a chemically-defined matrix for in vitro cardiac tissue generation, we present dextran (Dex)-derived hydrogels as matrices suitable for bioartificial cardiac tissues (BCT). The dextran hydrogels were generated in situ by using hydrazone formation as the crosslinking reaction. Material properties were flexibly adjusted, by varying the degrees of derivatization and the molecular weight of dextran used. Furthermore, to modulate dextran’s bioactivity, cyclic pentapeptide RGD was coupled to its backbone. BCTs were generated by using a blend of modified dextran and human collagen (hColI) in combination with induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and fibroblasts. These hColI + Dex blends with or without RGD supported tissue formation and functional maturation of CMs. Contraction forces (hColI + Dex-RGD: 0.27 ± 0.02 mN; hColI + Dex: 0.26 ± 0.01 mN) and frequencies were comparable to published constructs. Thus, we could demonstrate that, independent of the presence of RGD, our covalently linked dextran hydrogels are a promising matrix for building cardiac grafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.