Abstract

With the development of advanced robotic hands, a reliable neural-machine interface is essential to take full advantage of the functional dexterity of the robots. In this preliminary study, we developed a novel method to estimate isometric forces of individual fingers continuously and concurrently during dexterous finger flexion and extension. Specifically, motor unit (MU) discharge activity was extracted from the surface high-density electromyogram (EMG) signals recorded from the finger extensors and flexors, respectively. The MU information was separated into different groups to be associated with the flexion or extension of individual fingers and was then used to predict individual finger forces during multi-finger flexion and extension tasks. Compared with the conventional EMG amplitude-based method, our method can obtain a better force estimation performance (a higher correlation and a smaller estimation error between the predicted and the measured force) when a linear regression model was used. Further exploration of our method can potentially provide a robust neural-machine interface for intuitive control of robotic hands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call