Abstract

AbstractThis paper focuses on the performance analysis of multi-segment continuum robots, including reachable workspace and dexterity performance. Since excellent dexterity is an important feature of continuum robots, two local indices inspired by separating robotic Jacobian matrix, namely axiality and angularity dexterity, are introduced to explore the dexterity. Then, a Monte Carlo Method is adopted to simulate the distribution of local dexterity over the workspace. On this basis, the corresponding global indices in axiality and angularity are defined to assess global dexterity performance. To investigate the optimal kinematic performance, an objective function related to the segment lengths is designed under the consideration of reachable workspace and dexterity performance. Finally, Particle Swarm Optimization (PSO) algorithm is used to solve this optimization problem successfully. The optimal length distributions for two-segment and three-segment continuum robots are discovered. Most importantly, it is found that our method can also apply to general multi-segment continuum robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.