Abstract

Objective We previously reported that dexmedetomidine (DEX) offers cardioprotection against ischemia/reperfusion injury in rats. Here, we evaluated the role of toll-like receptors 4- (TLR4-) myeloid differentiation primary response 88- (MyD88-) nuclear factor-kappa B (NF-κB) signaling in DEX-mediated protection of cardiomyocytes using in vitro models of hypoxia/reoxygenation (H/R). Methods The experiments were carried out in H9C2 cells and in primary neonatal rat cardiomyocytes. Cells pretreated with vehicle or DEX were exposed to hypoxia for 1 h followed by reoxygenation for 12 h. We analyzed cell viability and lactate dehydrogenase (LDH) activity and measured tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β mRNA levels, TLR4, MyD88, and nuclear NF-κB p65 protein expression and NF-κB p65 nuclear localization. TLR4 knock-down by TLR4 siRNA transfection and overexpression by TLR4 DNA transfection were used to further confirm our findings. Results DEX protected against H/R-induced cell damage and inflammation, as evidenced by increased cell survival rates, decreased LDH activity, and decreased TNF-α, IL-6, and IL-1β mRNA levels, as well as TLR4 and NF-κB protein expression. TLR4 knock-down partially prevented cell damage following H/R injury, while overexpression of TLR4 abolished the DEX-mediated protective effects. Conclusions DEX pretreatment protects rat cardiomyocytes against H/R injury. This effect is partly mediated by TLR4 suppression via TLR4-MyD88-NF-κB signaling.

Highlights

  • Cardiac reperfusion is a critical factor that determines prognosis after myocardial ischemia and leads to further tissue damage and can even increase infarct size

  • The survival rate of cardiomyocytes was markedly decreased in the H/R group compared to the control group

  • Quantitative RT-PCR showed that tumor necrosis factor-α (TNF-α), IL-6, and IL-1β mRNA levels were significantly increased in the H/R group compared to the control, and DEX pretreatment partially blocked the increase in these inflammatory factors (Figures 1(e)–1(j))

Read more

Summary

Introduction

Cardiac reperfusion is a critical factor that determines prognosis after myocardial ischemia and leads to further tissue damage and can even increase infarct size. Myocardial ischemia/reperfusion (I/R) injury is a complex pathophysiological process involving a variety of factors and signaling pathways, including oxygen free radicals, calcium overload, inflammation, and apoptosis [1]. A previous study reported that TLR4 promotes cardiac dysfunction following myocardial ischemia by activating nuclear factor-κB- (NF-κB-) dependent apoptosis and increasing expression of proinflammatory cytokines [4]. Other studies showed that myocardial injury and inflammation were limited in TLR4-deficient mice after I/R [5, 6] and in in vitro TLR4 knock-down in cardiomyocytes [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call