Abstract

Heatstroke causes systemic inflammation, followed by vascular endothelial damage. The normal vascular endothelium is coated by endothelial glycocalyx (EGCX). Dexmedetomidine (DEX) has an anti-inflammatory effect, but there has been little investigation on the influence of heatstroke on EGCX and the effect of DEX on this condition. Therefore, we examined whether EGCX was disrupted in heatstroke and if DEX improved survival and preserves EGCX. Anesthetized Wistar rats were randomly assigned to three groups: a DEX group treated with DEX (5µg/kg/h) and 0.9% saline infused continuously at 10ml/kg/h during heat exposure; a NSS group given 0.9% saline during heat exposure; and a SHAM group given 0.9% saline alone without heat exposure. Heatstroke was induced by exposure to an ambient temperature of 40°C with relative humidity of 60%. The survival rate was assessed up to 2h after the start of heat exposure. Plasma levels of syndecan-1 and the thickness of EGCX using electron microscopy were measured when the systolic blood pressure fell to less than 80mmHg. The survival rate after 2h of heat exposure was significantly higher in the DEX group compared to the NSS group (89% vs. 22%, P = 0.004). Plasma levels of syndecan-1 were 0.6 ± 1.3, 9.7 ± 5.9, and 2.1 ± 3.4ng/ml in the SHAM, NSS and DEX groups, respectively (P = 0.013). The thickness of EGCX was significantly higher in the DEX group compared with the NSS group (P = 0.001). EGCX was disrupted in heatstroke, and DEX improved survival and preserved EGCX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.