Abstract

PurposeDexmedetomidine, an α2-adrenergic agonist, provides sedative and analgesic effects without significant respiratory depression. Dexmedetomidine has been suggested to have an antiapoptotic effect in response to various brain insults. We developed an oral mucosa patch using dexmedetomidine for sedation. The effects of the dexmedetomidine oral mucosa patch on cell proliferation and apoptosis in the hippocampus were evaluated.MethodsA hydrogel oral mucosa patch was adhered onto the oral cavity of physiologically normal rats, and was attached for 2 hours, 6 hours, 12 hours, or 24 hours. Plasma dexmedetomidine concentrations were determined by liquid chromatography– electrospray ionization–tandem mass spectrometry–multiple-ion reaction monitoring (LC-ESI-MS/MS-MRM). Cell proliferation in the hippocampus was detected by Ki-67 immunohistochemistry. Caspase-3 immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and Western blotting for Bax and Bcl-2 were performed to detect hippocampal apoptosis. The levels of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) in the hippocampus were also measured by Western blotting.ResultsPlasma dexmedetomidine concentration increased according to the attachment time of the dexmedetomidine oral mucosa patch. Hippocampal cell proliferation did not change due to the dexmedetomidine oral mucosa patch, and the dexmedetomidine oral mucosa patch exerted no significant effect on BDNF or TrkB expression. In contrast, the dexmedetomidine oral mucosa patch exerted an antiapoptotic effect depending on the attachment time of the dexmedetomidine oral mucosa patch.ConclusionsA dexmedetomidine oral mucosa patch can be used as a convenient tool for sedation, and is of therapeutic value due to its antiapoptotic effects under normal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.