Abstract

Recent studies have demonstrated that propofol causes neurodegeneration in developing brains. Evidence has shown that dexmedetomidine has neuroprotective effects. However, whether dexmedetomidine can reduce propofol-induced neuroapoptosis and by what mechanisms it acts remain unclear. We investigated whether dexmedetomidine can attenuate propofol-induced neuroapoptosis by disturbing the PI3K/Akt/GSK3β pathway during brain development. Seven-day-old rats were randomly exposed to 100mg/kg propofol and 100mg/kg propofol plus different doses of dexmedetomidine or 100mg/kg propofol and 75μg/kg dexmedetomidine plus PI3K inhibitor LY294002 or GSK3β inhibitor TDZD-8. TEM and TUNEL were used to detect neuronal structure changes and apoptosis. The expression of phospho-Akt, phospho-GSK3β, Akt and GSK3β were quantified using western blots and immunofluorescence. Pretreatment with different doses of dexmedetomidine protected against propofol-induced neuroapoptosis. Furthermore, propofol decreased the levels of phospho-Akt and phospho-GSK3β, whereas dexmedetomidine partially reversed this inhibition. In addition, treatment with LY294002 inhibited the neuroprotection of dexmedetomidine, whereas TDZD-8 enhanced neuroprotection. Our results indicate that dexmedetomidine prevents propofol-induced neuroapoptosis by increasing the levels of phospho-Akt and phospho-GSK3β.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call