Abstract

Objective With the increasing incidence of diabetes mellitus (DM) combined with myocardial ischemia, how to reduce myocardial ischemia-reperfusion injury in DM patients has become a major problem faced by clinicians. We investigated the therapeutic effects of dexmedetomidine (DEX) on myocardial ischemia-reperfusion injury in DM rats and its effect on endoplasmic reticulum stress. Methods SD rats with SPF grade were randomly divided into 6 groups: non-DM rats were divided into the sham operation group (NDM-S group), ischemia-reperfusion group (NDM-IR group), and dexmedetomidine group (NDM-DEX group); DM rats were divided into the diabetic sham operation group (DM-S group), diabetes-reperfusion group (DM-IR group), and diabetes-dexmedetomidine (DM-DEX) group, with 10 rats in each group. Then the effects of DEX on the changes of CK-MB and cTnT levels were examined. The effects of myocardial pathological damage and myocardial infarct size were detected. The apoptosis of cardiomyocytes was detected. The apoptosis of heart tissue cells was also tested through the expressions of cleaved caspase-3, Bcl-2, and Bax proteins. The expression of endoplasmic reticulum stress-related proteins GRP78, CHOP, ERO1α, ERO1β, and PDI was examined. The hypoxia/reoxygenation (H/R) injury cell model was established, the effects of DEX, DEX+ ERS agonist on cell apoptosis was also detected. Results The myocardial damage of DM-IR was more severe than that of NDM-IR rats. DEX could reduce the expression of CK-MB and cTnT, reduce pathological damage, and reduce scar formation and improve fibrosis. DEX can reduce the expression of GRP78, CHOP, ERO1α, ERO1β, and PDI proteins in vivo and in vitro. And the effect of DEX on cell apoptosis could be blocked by ERS agonist. Conclusion DEX attenuates myocardial ischemia-reperfusion injury in DM rats and H/R injury cell, which is associated with the reduction of ERS-induced cardiomyocyte apoptosis.

Highlights

  • Cardiovascular disease is listed as one of the greatest health threats to humans in the 21st century

  • The rats were randomly divided into 6 groups: non-diabetes mellitus (DM) rats were divided into the sham operation group (NDM-S group), ischemia-reperfusion group (NDMIR group), dexmedetomidine group (NDM-DEX group); DM rats were divided into the diabetic sham operation group (DM-S group), diabetes-reperfusion group (DM-IR group), diabetes-dexmedetomidine (DM-DEX) group, with 10 rats in each group only

  • The results showed that the expressions of Bax and cleaved caspase-3 in the NDM-IR and DM-IR groups were significantly increased and the expression of Bcl-2 was significantly decreased (P < 0:05)

Read more

Summary

Objective

With the increasing incidence of diabetes mellitus (DM) combined with myocardial ischemia, how to reduce myocardial ischemia-reperfusion injury in DM patients has become a major problem faced by clinicians. We investigated the therapeutic effects of dexmedetomidine (DEX) on myocardial ischemia-reperfusion injury in DM rats and its effect on endoplasmic reticulum stress. The effects of myocardial pathological damage and myocardial infarct size were detected. The expression of endoplasmic reticulum stress-related proteins GRP78, CHOP, ERO1α, ERO1β, and PDI was examined. The hypoxia/reoxygenation (H/R) injury cell model was established, the effects of DEX, DEX+ ERS agonist on cell apoptosis was detected. DEX can reduce the expression of GRP78, CHOP, ERO1α, ERO1β, and PDI proteins in vivo and in vitro. The effect of DEX on cell apoptosis could be blocked by ERS agonist. DEX attenuates myocardial ischemia-reperfusion injury in DM rats and H/R injury cell, which is associated with the reduction of ERS-induced cardiomyocyte apoptosis

Introduction
Materials and Methods
Cell Experiment
Result
Findings
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.