Abstract
Background Dexmedetomidine (DEX) has showed significant analgesic effects in neuropathic pain, but the underlying mechanism has remained elusive. Our present study aimed to explore the effect of DEX on hyperalgesia with the involvement of p38MAPK signaling pathway in a rat model of monoarthritis (MA). Methods MA rat model was induced by injection of Complete Freund’s Adjuvant (CFA). Pathological changes of MA rats were observed by HE staining and Safranin-O/Fast Green staining. Ankle circumference, paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) were measured to judge the degree of hyperalgesia in MA rats. Immunohistochemistry and ELISA were applied to observe the degree of inflammation in rats. Western blot analysis was conducted to detect expression of p38MAPK signaling pathway-related factors. The mechanism of p38MAPK signaling pathway in MA rats was observed via treatment of Anisomycin or SB203580 combined with DEX. Results After 8 h of CFA induction, joint swelling and hyperalgesia occurred in rats. There were obvious pathological changes in the joint cavity, the joint cavity space became narrow and synovial bursa became rough. A large number of inflammatory cell infiltration was observed under microscope. After injection of DEX and SB203580, PWT and PWL were prolonged, the expression of serum inflammatory factors was decreased, and the expression of p38MAPK signaling pathway-related factors was decreased; while all the detected indexes were recovered in MA rats after treated with DEX and Anisomycin. Conclusions Our study provided evidence that DEX could alleviate hyperalgesia in arthritis rats through inhibition of the p38MAPK signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.