Abstract

The ability of the glucocorticoid dexamethasone to modulate the insulin receptor was examined directly in primary cultures of hepatocytes prepared from adult male rats. Hepatocytes were cultured in a defined medium in the presence and absence of dexamethasone, 0.1 microM. The exposure of hepatocytes to dexamethasone resulted in a time-dependent (steady state by 32 h) increase in insulin binding in both intact hepatocytes and Triton X-100-soluble extracts (total insulin receptor content). The enhanced insulin binding found in soluble extracts of dexamethasone-treated hepatocytes was the result of an increase in insulin receptor number without a change in receptor affinity. In order to assess the mechanism by which dexamethasone "up-regulates" the insulin receptor, the heavy isotope density-shift technique was used to analyze insulin receptor turnover in control and dexamethasone-treated hepatocytes. Hepatocytes were initially cultured for 32 h in standard culture media containing only "light" (14C, 12C, 1H) amino acids. In hepatocytes exposed to dexamethasone, a 417% increase in insulin binding in Triton X-100-soluble extracts was observed. After 32 h, when steady state binding is achieved in dexamethasone-treated cultures, parallel cultures of hepatocytes incubated in the absence and presence of dexamethasone were washed and subsequently cultured in media containing "heavy" amino acids (15N, 13C, 2H). The time-dependent disappearance of light insulin receptor (receptor degradation) and appearance of heavy insulin receptor (receptor synthesis) were monitored using CsCl gradients to resolve the two density species of receptor. At steady state, the rate of receptor synthesis (k8) was 2.94 and 0.62 fmol of insulin bound h-1 in dexamethasone-treated and control hepatocytes, respectively. In contrast to this large increase in the rate of receptor synthesis observed in dexamethasone-treated cells, the first order rate constant for decay (k d) was the same in dexamethasone-treated (0.074 h-1) and in control (0.077 h-1) hepatocytes. We therefore conclude that glucocorticoid-induced up-regulation of the insulin receptor in the liver is due to stimulation of insulin receptor synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.