Abstract

This study examined the effect of dexamethasone on von Kossa-positive nodule formation and alkaline phosphate specific activity of costochondral chondrocytes at two distinct stages of maturation. The nodules formed by the more mature growth zone chondrocyte cultures contained von Kossa-positive deposits in the extracellular matrix that had a punctate morphology. The nodules formed by the less mature resting zone cells also contained von Kossa-positive deposits, but differentiation was delayed by three-to-five days compared to the growth zone cell cultures. Dexamethasone stimulated the number of nodules formed and shortened the length of time required for von Kossa-positive nodule formation in both types of cultures. During the first 48 h of exposure to dexamethasone, alkaline phosphatase specific activity in the cell layer of both resting zone and growth zone cultures was increased in a dose-dependent manner. At 12 days post-confluence and thereafter, enzyme activity was inhibited in the dexamethasone-treated cultures. Changes in matrix vesicle alkaline phosphatase specific activity reflected those changes seen in the cell layer after dexamethasone treatment, but with higher magnitude, suggesting that one effect of dexamethasone might be to regulate matrix vesicle function. With the exception of one culture, the chondrocytes did not synthesize type X collagen under any of the experimental conditions used. Fourier transform infrared spectroscopy (FTIR) failed to detect the presence of calcium phosphates in any of the cultures exposed to dexamethasone except one. These results demonstrate that dexamethasone promotes early differentiation events, including nodule formation and increased alkaline phosphatase activity, in costochondral chondrocyte cultures. The failure to detect type X collagen synthesis and mineralization in both dexamamethasone-treated and control cultures suggests that these cultures lack the factors necessary for terminal differentiation and mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.