Abstract

There are no established therapies for preventing or rescuing perinatal infection or inflammation-induced perinatal brain damage. We administered dexamethasone (DEX), a synthetic corticosteroid anti-inflammatory drug, to neonatal rats in a model of such damage induced by a combination of lipopolysaccharide (LPS) and hypoxia-ischemia (HI), which produces characteristic histologic and behavioral abnormalities. Four hours after the injection of LPS (1 mg/kg, i.p.), 7-day-old Wistar rat pups were subjected to unilateral HI for 1 hour according to Levine's procedure. Injections of 0.5 mg/kg of dexamethasone (DEX-treated group, n = 15) or saline (saline-treated group, n = 15) were given 4 hours before HI. A sham-operated control group received neither LPS nor HI (n = 15). We chose rats of this age because their stage of brain maturation is similar to the human neonate. Over the 7 to 16 weeks after treatment, a choice reaction time (CRT) task was used for assessment of attention processes in each group, an 8-arm radial maze task was used to test short-term memory, and a water maze task was used to test long-term memory. In the CRT task, the reward food was released when the tested animal correctly pressed a lever on the side of an illuminating lamp. The correct and incorrect lever pressings were counted. In the 8-arm radial maze task, rats were allowed to move freely, seeking a reward of food placed at the end of 1 arm. An error was defined as the choice of an arm that had already been visited. In the water maze, rats had to swim to seek a concealed platform as aversive escape motivation. At 19 weeks, the rats were euthanized, the brain was removed, sectioned coronally, and the volume of each part was measured. The striatum, cortex, and hippocampus showed reductions in volume in the saline-treated group (42.7%, 49.2%, and 34.9% decreases compared with the sham-operated controls, respectively), but this was not observed in the DEX-treated group. All learning and memory processes were impaired with the combination of LPS and HI treatment, but these deficits were almost completely prevented by DEX treatment. Dexamethasone is a promising candidate for prevention of infection and inflammation-induced perinatal brain damage. The impact of dexamethasone identifies potential therapeutic pathways once the mechanism of dexamethasone's protection is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call