Abstract

The purpose of this study is to evaluate the effects of dexamethasone on mesenchymal stem cells from human gingiva using next-generation sequencing. The verification and suggestion of possible mechanisms was performed. Human gingiva-derived stem cells were treated with a final concentration of 10-7M dexamethasone at 2 and 24 hours. Extraction of RNA, sequencing of mRNA, gene ontology and pathway analysis were performed. Quantification by real-time polymerase chain reaction was conducted for validation. A fold change of two was applied for this study, and a log2 normalized read count of 5 or greater was applied to minimize false counts. Expression of SMAD3 and ESR1 was decreased in dexamethasone at 24 hours. Increased expression of BMP6 and ACHE was noted in dexamethasone at 24 hours. TGF-β signaling was involved in the target genes chosen for osteoblast differentiation. It was clear that the application of dexamethasone produced reduced expression of SMAD3 and ESR1 and enhanced expression of ACHE and BMP6 of human gingiva-derived mesenchymal stem cells. An RNA sequencing strategy can provide new insights into the mechanism of dexamethasone in stem cells originating from dental areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.