Abstract

BackgroundCorticosteroids are routinely utilized to alleviate edema in patients with intracranial lesions and are first-line agents to combat immune-related adverse events (irAEs) that arise with immune checkpoint blockade treatment. However, it is not known if or when corticosteroids can be administered without abrogating the efforts of immunotherapy. The purpose of this study was to evaluate the impact of dexamethasone on lymphocyte activation and proliferation during checkpoint blockade to provide guidance for corticosteroid use while immunotherapy is being implemented as a cancer treatment.MethodsLymphocyte proliferation, differentiation, and cytokine production were evaluated during dexamethasone exposure. Human T cells were stimulated through CD3 ligation and co-stimulated either directly by CD28 ligation or by providing CD80, a shared ligand for CD28 and CTLA-4. CTLA-4 signaling was inhibited by antibody blockade using ipilimumab which has been approved for the treatment of several solid tumors. The in vivo effects of dexamethasone during checkpoint blockade were evaluated using the GL261 syngeneic mouse intracranial model, and immune populations were profiled by flow cytometry.ResultsDexamethasone upregulated CTLA-4 mRNA and protein in CD4 and CD8 T cells and blocked CD28-mediated cell cycle entry and differentiation. Naïve T cells were most sensitive, leading to a decrease of the development of more differentiated subsets. Resistance to dexamethasone was conferred by blocking CTLA-4 or providing strong CD28 co-stimulation prior to dexamethasone exposure. CTLA-4 blockade increased IFNγ expression, but not IL-2, in stimulated human peripheral blood T cells exposed to dexamethasone. Finally, we found that CTLA-4 blockade partially rescued T cell numbers in mice bearing intracranial gliomas. CTLA-4 blockade was associated with increased IFNγ-producing tumor-infiltrating T cells and extended survival of dexamethasone-treated mice.ConclusionsDexamethasone-mediated T cell suppression diminishes naïve T cell proliferation and differentiation by attenuating the CD28 co-stimulatory pathway. However, CTLA-4, but not PD-1 blockade can partially prevent some of the inhibitory effects of dexamethasone on the immune response.

Highlights

  • Corticosteroids are routinely utilized to alleviate edema in patients with intracranial lesions and are first-line agents to combat immune-related adverse events that arise with immune checkpoint blockade treatment

  • We demonstrated that dexamethasone attenuates the CD28 co-stimulatory pathway by upregulating CTLA-4, thereby severely inhibiting naïve T cell proliferation and differentiation

  • Recombinant CD80 permitted us to dissect the role of extracellular molecular interactions between CD80 and its multiple binding partners on T cells

Read more

Summary

Introduction

Corticosteroids are routinely utilized to alleviate edema in patients with intracranial lesions and are first-line agents to combat immune-related adverse events (irAEs) that arise with immune checkpoint blockade treatment. It is not known if or when corticosteroids can be administered without abrogating the efforts of immunotherapy. Corticosteroids are first-line agents against immune-related adverse events (irAEs) that may develop during or following immunotherapy, checkpoint blockade [6, 7] To date, it remains unclear how steroids impact adaptive anti-tumor immunity [8, 9], and whether the effects of corticosteroids on immune response differs if they are administered prior to initiation of immune therapy or after an immune response has been generated. The immunosuppressive effects of corticosteroids require further interrogation, understanding the impact of this treatment when administered at the initiation of checkpoint blockade therapy, a situation likely to be common in patients with intracranial malignancies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call