Abstract

Although the cardioprotective benefits of exercise training are well known, the effects of training on dexamethasone (DEX)-induced arterial stiffness are still unclear. This study was aimed at investigating the mechanisms induced by training to prevent DEX-induced arterial stiffness. Wistar rats were allocated into 4 groups and submitted to combined training (aerobic and resistance exercises, on alternate days, 60% of maximal capacity, for 74 d) or were kept sedentary: sedentary control rats (SC), DEX-treated sedentary rats (DS), combined training control (CT), and DEX-treated trained rats (DT). During the last 14 d, rats were treated with DEX (50 μg/kg per body weight, per day, s.c.) or saline. DEX increased PWV (+44% vs +5% m/s, for DS vs SC, p<0.001) and increased aortic COL 3 protein level (+75%) in DS. In addition, PWV was correlated with COL3 levels (r=0.682, p<0.0001). Aortic elastin and COL1 protein levels remained unchanged. On the other hand, the trained and treated groups showed lower PWV values (-27% m/s, p<0.001) vs DS and lower values of aortic and femoral COL3 compared with DS. As DEX is widely used in several situations, the clinical relevance of this study is that the maintenance of good physical capacity throughout life can be crucial to alleviate some of its side effects, such as arterial stiffness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call