Abstract
Brain edema is an important factor leading to morbidity and mortality associated with primary brain tumors. Dexamethasone, a synthetic glucocorticoid, is routinely prescribed with antineoplastic agents to alleviate pain associated with chemotherapy and reduce intracranial pressure. We investigated whether dexamethasone treatment increased the expression and activity of multidrug resistance (MDR) transporters at the blood-brain barrier. Treatment of primary rat brain microvascular endothelial cells with submicromolar concentrations of dexamethasone induced significantly higher levels of drug efflux transporters such as breast cancer resistance protein (abcg2), P-glycoprotein (P-gp; abcb1a/abcb1b), and MDR protein 2 (Mrp2; abcc2) as indicted by protein and mRNA levels as well as by functional activity. The effect of dexamethasone on transporter function was significant within 6 h of treatment, was dose dependent, and was reversible. Dexamethasone-induced upregulation of Bcrp and P-gp expression and function was partially abrogated by the glucocorticoid receptor (GR) antagonist RU486. In contrast, RU486 had no effect on the dexamethasone-induced upregulation of Mrp2, suggesting a GR-independent regulation of Mrp2, and a GR-dependent regulation of P-gp and Bcrp. In addition to the dexamethasone-induced upregulation of MDR transporters, we measured a dose-dependent and reversible increase in the expression of the nuclear transcription factor pregnane xenobiotic receptor (PXR). Administering dexamethasone to rats caused increased expression of PXR in brain microvessels within 24 h. These results suggest that adjuvant therapy with corticosteroids such as dexamethasone in the treatment of brain tumors may increase the expression of MDR transporters at the blood-brain barrier through pathways involving GR and PXR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.