Abstract
Frostbite is thought to result from initial vasoconstriction, ischemia, intracellular ice crystal formation, and inflammation caused by reperfusion injury. Corticosteroids have demonstrated beneficial anti-inflammatory effects in the treatment of other ischemia/reperfusion clinical conditions. The objective of this study was to determine the effect of dexamethasone (dex) on wound healing, inflammatory response, and vasculogenesis in a mouse skin frostbite model. Treatment and control groups of C57/BL6 mice were subjected to frostbite using a previously described model. Treatment with intraperitoneal dex (1 mg·kg-1·d-1) began on the day of frostbite induction and lasted for 7 d. Over 4 wk, we compared wound diameter; morphology by visual inspection, hematoxylin-eosin staining, and Masson's trichrome staining; density of inflammatory cytokines IL-1β and TNFα using Western blot analysis; and formation of microvasculature using immunofluorescence staining. Data were analyzed using 1-way or 1-way repeated-measures analysis of variance. After frostbite injury, morphological images demonstrated epidermal necrosis and loss in the frostbitten skin as well as infiltration of inflammation-related leukocytes. Increased production of inflammatory cytokines and disappearance of the microvasculature also occurred in the frostbitten skin. In comparison to the control group, treatment with dex promoted wound healing as demonstrated by decreased wound diameter; decreased levels of inflammatory cytokines, and accelerated formation of mature microvasculature. In this animal model, dex improved wound healing in frostbitten skin and demonstrated both anti-inflammatory effects and stimulation of vasculogenesis. This study suggests that the use of potent anti-inflammatory agents may be an effective strategy for mitigating frostbite injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.