Abstract
Previous investigations have shown that sepsis, while causing cardiac dysfunction, can protect the heart from ischemia-reperfusion injury. Sepsis-induced protection may be due to nitric oxide produced by an inducible form of nitric oxide synthase generated in response to cytokines released during sepsis. The glucocorticoid dexamethasone has been shown to inhibit the synthesis of the inducible form of nitric oxide synthase (iNOS). The goals of this study were to determine if dexamethasone would prevent sepsis-induced cardiac dysfunction and sepsis-induced protection of the heart from ischemia-reperfusion injury. In this experiment, rats were made septic by injecting Escherichia coli into the dorsal subcutaneous space. Control rats were injected with sterile saline. At the time of surgery, some of the control and septic animals were injected intraperitoneally with dexamethasone (3 mg/kg). The next day, 24-26 hr after injection of the first dose of E. coli, animals were anesthetized, and hearts were removed and studied in the isovolumic beating-heart preparation. Left ventricular end diastolic pressure was set to 5 mmHg, and left ventricular pressure was measured continuously throughout the protocol. Left ventricular developed pressure (LVDP) was used as an index of LV function. After stabilization, hearts were made globally ischemic for 35 min and then reperfused for 25 min. As has been shown previously, sepsis depressed LVDP but also protected the heart from further depression of LVDP by ischemia and reperfusion. Dexamethasone prevented both sepsis-induced cardiac dysfunction and sepsis-induced protection of the heart from ischemia-reperfusion injury. In addition plasma nitrite/nitrate levels were not different from control levels in the dexamethasone-treated septic rats whereas levels were elevated in the septic animals. The dexamethasone mediated abrogation of sepsis-induced cardiac dysfunction and protection during ischemia-reperfusion injury may be due to suppression of nitric oxide production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Society for Experimental Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.