Abstract

The hedgehog (Hh) pathway plays a central role in the development and repair of our bodies. Therefore, dysregulation of the Hh pathway is responsible for many developmental diseases and cancers. Basal cell carcinoma and medulloblastoma have well-established links to the Hh pathway, as well as many other cancers with Hh-dysregulated subtypes. A smoothened (SMO) receptor plays a central role in regulating the Hh signaling in the cells. However, the complexities of the receptor structural mechanism of action and other pathway members make it difficult to find Hh pathway inhibitors efficient in a wide range. Recent crystal structure of SMO with cholesterol indicates that it may be a natural ligand for SMO activation. Structural similarity of fluorinated corticosterone derivatives to cholesterol motivated us to study the effect of dexamethasone, fludrocortisone, and corticosterone on the Hh pathway activity. We identified an inhibitory effect of these three drugs on the Hh pathway using a functional assay in NIH3T3 glioma response element cells. Studies using BODIPY-cyclopamine and 20(S)-hydroxy cholesterol [20(S)-OHC] as competitors for the transmembrane (TM) and extracellular cysteine-rich domain (CRD) binding sites showed a non-competitive effect and suggested an alternative or allosteric binding site for the three drugs. Furthermore, the three steroids showed an additive effect on Hh pathway inhibition when tested in combination with cyclopamine. Our study reports the antagonistic effect of dexamethasone, fludrocortisone, and corticosterone on the Hh pathway using functional assay and confirmed that they do not bind to the CRD or adjacent TM binding cavities of SMO. The study also suggests that dexamethasone could be additionally beneficial as the adjuvant therapy for cancer patients with an established link to the dysregulated Hh pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.