Abstract
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung cells is decreased by approximately 50% following 24-h dexamethasone treatment. Ligand binding assays identified an average of 30,000 receptors per cell in untreated FRL cells, while analysis of dexamethasone treated cells showed a decrease to about 16,000 receptors per cell. No substantial changes in receptor affinities were detected. Immunoprecipitation of 35S-methionine-labeled EGF receptor protein demonstrated a 50% decrease in total EGF receptor protein after 24-h dexamethasone treatment. Brief pulse labeling with 35S-methionine showed that the reduction in total EGF receptor protein content was due to a decrease in EGF receptor synthesis. Receptor synthesis declined about 25% after 1 h of dexamethasone treatment and at 3 h, EGF receptor synthesis was maximally decreased to nearly 50% that of cells not exposed to dexamethasone. Dexamethasone treatment was also effective in reducing EGF receptor synthesis in cells pretreated with retinoic acid, an agent which enhances receptor synthesis. These data are the first to document a dexamethasone-induced decrease in EGF receptor synthesis. Furthermore, these findings may provide a plausible mechanism by which dexamethasone could regulate EGF responsiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.