Abstract

Canonical transient receptor potential 4 (TRPC4) channels are calcium-permeable, nonselective cation channels that are widely distributed in mammalian cells. It is generally speculated that TRPC4 channels are activated by Gq/11-PLC pathway or directly activated by Gi/o proteins. Although many mechanistic studies regarding TRPC4 have dealt with heterotrimeric G proteins, here, we first report the functional relationship between TRPC4 and small GTPase, Rasd1. Rasd1 selectively activated TRPC4 channels, and it was the only Ras protein among Ras protein family that can activate TRPC4 channels. For this to occur, it was found that certain population of functional Gαi1 and Gαi3 proteins are essential. Meanwhile, dexamethasone, a synthetic glucocorticoid and anti-inflammatory drug was known to increase messenger RNA (mRNA) level of Rasd1 in pancreatic β-cells. We have found that dexamethasone triggers TRPC4-like cationic current in INS-1 cells via increasing protein expression level of Rasd1. This relationship among dexamethasone, Rasd1, and TRPC4 could suggest a new therapeutic agent for hospitalized diabetes mellitus (DM) patients with prolonged dexamethasone prescription.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.