Abstract

Employing mass conservation, time-resolved dewetting experiments of thin polymer films allow to determine in real time the dynamic contact angle and the slippage length. Moreover, based on a systematic variation of interfacial properties of a polymer brush, dewetting makes it possible to calculate the force it needs to extract a single polymer chain from its own melt. In the visco-elastic regime close to the glass transition, the temperature and molecular weight dependence of the relaxation time of residual stresses resulting from film preparation by spin-coating can be obtained from the evolution of the shape of the dewetting rim. The presented examples demonstrate that dewetting represents a powerful approach for a sensitive characterization of rheological, frictional and interfacial properties of thin polymer films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.