Abstract

A theoretical and experimental study of dewatering of fibre suspensions by uniaxial compression is presented. Solutions of a one-dimensional model are discussed and asymptotic limits of fast and slow compression are explored. Particular focus is given to relatively rapid compression and to the corresponding development of spatial variations in the solidity and velocity profiles of the suspension. The results of complementary laboratory experiments are presented for nylon or cellulose fibres suspended in viscous fluid. The constitutive relationships for each suspension were measured independently. Measurements of the load for different fixed compression speeds, together with some direct measurements of the velocity profiles using particle tracking velocimetry, are compared with model predictions. The comparison is reasonable for nylon, but poor for cellulose fibres. An extension to the model, which allows for a strain-rate-dependent component in the network stress, is proposed, and is found to give a dramatic improvement in the model predictions for cellulose fibre suspensions. The reason for this improvement is attributed to the microstructure of cellulose fibres, which, unlike nylon fibres, are themselves porous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.