Abstract
Dewatering by mechanical thermal expression (MTE) for a range of materials is explored using a laboratory-scale MTE compression-permeability cell. It is shown that MTE can be used to effectively dewater a range of biomaterials including lignite, biosolids, and bagasse. The underlying dewatering mechanisms relevant to MTE, namely (1) filtration of water expelled due to thermal dewatering, (2) consolidation, and (3) flash evaporation, are discussed. At lower temperatures, the dominating dewatering mechanism is consolidation, but with increasing temperature, thermal dewatering becomes more important. A major focus is an investigation of the effects of processing parameters, including temperature (20 to 200°C) and pressure (1.5 to 24 MPa), on material permeability, a fundamental dewatering parameter. It is illustrated that permeability is particularly dependent on the processing temperature, owing to changes in both the material structure and the water properties. In addition, a comparison of permeability in the direction of applied force (axial) and perpendicular to the direction of applied force (radial) is presented. It is shown that, due to alignment of particles under the applied force, the permeability and, hence, rate of water removal in the radial direction is greater than in the axial direction. SEM micrographs are presented to illustrate the particle alignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.