Abstract
Embedded systems development has interesting challenges due to the complexity of the tasks they execute. Most of the methods used for developing embedded applications are either hard to scale up for large systems, or require a difficult testing effort with no guarantee for bug-free software products. Instead, construction of system models and their analysis through simulation reduces both end costs and risks, while enhancing system capabilities and improving the quality of the final products. M&S let users experiment with "virtual" systems, allowing them to explore changes, and test dynamic conditions in a risk-free environment. We present a Model-driven framework to develop cyber-physical systems based on the DEVS (Discrete Event systems Specification) formalism. This approach combines the advantages of a simulation-based approach with the rigor of a formal methodology. We will discuss how to use this framework to incrementally develop embedded applications, and to seamlessly integrate simulation models with hardware components. Our approach does not impose any order in the deployment of the actual hardware components, providing flexibility to the overall process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.