Abstract

Two Tn5 lac insertions into the Myxococcus genome at sites omega 4414 and omega 4473, which are separated by 550 nucleotides, inactivate fruiting body development. Sporulation is decreased 100- to 10,000-fold. At least two genes, devR and devS, are transcribed in this region, probably as an operon. Expression of devR begins by 6 h after starvation has initiated development. On the basis of their nucleotide sequences, devR and devS are expected to encode proteins of 302 and 214 amino acids, respectively. Dev+ function can be restored by a segment of 7.8 kb cloned from the devRS region of wild-type cells. Two experiments show that devR expression is under strong negative autoregulation. beta-Galactosidase is expressed at a higher level from a transcriptional devR::lacZ fusion when the fused operon is in a dev strain than when it is in the dev/dev+ genetic background of a partial diploid. There is more mRNA accumulation from the devRS region in the dev strain than in a rescued dev/dev+ tandem duplication strain. Sporulation rescue is correlated with some degree of negative autoregulation, even though sporulation is not inversely proportional to beta-galactosidase expression from omega 4414. A second level of regulation is suggested by complementation of dev by dev+ in duplication strains. The expression of devRS, measured by sporulation levels, differs 1,000-fold when devRS+ is moved from a distance of 20 kb to 3 Mb from the mutant devRS locus. Expression of devR is also dependent on the cell density at which development is initiated, a third level of regulation. Multiple levels of regulation suggest that devRS is a switch required to activate completion of aggregation and sporulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.