Abstract

AbstractGeneration of fluids during metamorphism can significantly influence the fluid overpressure, and thus the fluid flow in metamorphic terrains. There is currently a large focus on developing numerical reactive transport models, and with it follows the need for analytical solutions to ensure correct numerical implementation. In this study, we derive both analytical and numerical solutions to reaction‐induced fluid overpressure, coupled to temperature and fluid flow out of the reacting front. All equations are derived from basic principles of conservation of mass, energy and momentum. We focus on contact metamorphism, where devolatilization reactions are particularly important owing to high thermal fluxes allowing large volumes of fluids to be rapidly generated. The analytical solutions reveal three key factors involved in the pressure build‐up: (i) The efficiency of the devolatilizing reaction front (pressure build‐up) relative to fluid flow (pressure relaxation), (ii) the reaction temperature relative to the available heat in the system and (iii) the feedback of overpressure on the reaction temperature as a function of the Clapeyron slope. Finally, we apply the model to two geological case scenarios. In the first case, we investigate the influence of fluid overpressure on the movement of the reaction front and show that it can slow down significantly and may even be terminated owing to increased effective reaction temperature. In the second case, the model is applied to constrain the conditions for fracturing and inferred breccia pipe formation in organic‐rich shales owing to methane generation in the contact aureole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call