Abstract

Vast applications and services have been enabled as the number of mobile or sensing devices with communication capabilities has grown. However, managing the devices, integrating networks or combining services across different networks has become a new problem since each network is not directly connected via back-end core networks or servers. The issue is and has been discussed especially in wireless sensor and actuator networks (WSAN). In such systems, sensors and actuators are tightly coupled, so when an independent WSAN needs to collaborate with other networks, it is difficult to adequately combine them into an integrated infrastructure. In this paper, we propose drone-as-a-gateway (DaaG), which uses drones as mobile gateways to interconnect isolated networks or combine independent services. Our system contains features that focus on the service being provided in the order of importance, different from an adaptive simple mobile sink system or delay-tolerant system. Our simulation results have shown that the proposed system is able to activate actuators in the order of importance of the service, which uses separate sensors’ data, and it consumes almost the same time in comparison with other path-planning algorithms. Moreover, we have implemented DaaG and presented results in a field test to show that it can enable large-scale on-demand deployment of sensing and actuation infrastructure or the Internet of Things (IoT).

Highlights

  • Wireless sensor and actuator networks (WSAN) [1] consist of sensors and actuators that are usually supposed to have at least one wireless communication module to communicate with the sink node

  • In contrast with other research works, we have focused on ‘which sensor needs to be focused on in terms of service’, ‘which actuator has to be firstly visited by the drone to reduce the main service delay’ and ‘which data transmission method is to be used in the given environment’, namely improvement of the interoperability of the drones to connect to a separate network

  • The DaaG system quickly finishes the data transmission compared to the nearest-based path-planning scheme since all actuators complete their job of monitoring the problematic sensor. This is because the highest correlated actuator is the first monitor in the actuator network, but it is the third monitor in the nearest-based path-planning scheme

Read more

Summary

Introduction

Wireless sensor and actuator networks (WSAN) [1] consist of sensors and actuators that are usually supposed to have at least one wireless communication module to communicate with the sink node. It is hardly feasible to combine independent and isolated WSANs into a new additional service network since sensors are tightly coupled with actuators. This tight coupling may result in the following: the actuation should correspond to the sensor data, and the actuator can affect the sensor data after the actuation, so that the actuator and the sensor may have a high spatial correlation. Tight coupling is inevitable in traditional WSAN because sensing devices cannot freely create a network of heterogeneous devices due to their limited capabilities of communication and processing. Even if the technical aspect is excluded, many vendors operate both sensors and actuators together since they require appropriate sensing data for their service

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call