Abstract

The anisotropic cellulose nanofiber (CNF)/carbon nanotube (CNT) aerogels hold a great promise in directional applications due to their distinct xylem-like aligned penetrating pore structures. The aspect ratio of CNF plays a crucial role in the pore structures of aerogels, directly dominating the final macroscopic properties of materials. Herein, three types of CNF with different aspect ratios were extracted through the 2,2,6,6-tetrmethylpiperidine-1-oxyl radical (TEMPO) oxidation process by changing the doses of oxidant. The corresponding anisotropic CNF/CNT aerogels were prepared by the unidirectional freeze-drying method and then their pore morphologies and properties were investigated in detail. The resulting aerogel with the shortest aspect ratio of CNF exhibited the densest porous structure, thereby obtaining the highest compressive strength of 110 kPa and elastic modulus of 383 kPa, while that containing the longest CNF possessed the highest thermal conductivity coefficient of 0.17 W m−1 K−1 and the worst thermal insulation. This research explored the relationship between the properties of the CNF/CNT aerogels and devisable pore structures caused by various aspect ratios of CNF, thus providing a new insight into the development of CNF/CNT aerogels with tunable performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call