Abstract

A crisis in chaotic scattering is characterized by the merging of two or more nonattracting chaotic saddles. The fractal dimension of the resulting chaotic saddle increases through the crisis. We present a rigorous analysis for the behavior of dynamical invariants associated with chaotic scattering by utilizing a representative model system that captures the essential dynamical features of crisis. Our analysis indicates that the fractal dimension and other dynamical invariants are a devil-staircase type of function of the system parameter. Our results can also provide insight for similar devil-staircase behaviors observed in the parametric evolution of chaotic saddles of general dissipative dynamical systems and in communicating with chaos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call