Abstract

It is shown that bipolar circuits can continue to play an important role in high-performance LSI and VLSI circuits, because power supply voltages and logic swings can be minimized independently of dimensions, and because the speed degradation due to on-chip wiring capacitances is less severe than in MOSFET/MESFET types of circuit. General performance improvements (in speed and packing density) of logic gates are obtained by increasing transistor f <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</inf> , and decreasing parasitic capacitances, series resistances and device areas, by using oxide isolation, self-aligned techniques and polysilicon electrodes. Fast switching diodes (such as Schottky barrier diodes and lateral polydiodes) improve the flexibility of circuit design. Logic circuits (such as I <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> L, LS, DTL, ISL, STL, ECL, and NTL), which already perform in LSI and VLSI circuits or are realistic proposals for them, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.