Abstract

Recently, device-free passive wireless indoor localization (DFPWL) has attracted great interest due to the widespread deployment of Wi-Fi devices and the rapid growth in demand for location-based services (LBS). The DFPWL fingerprinting approach based on channel state information (CSI) has become the mainstream method since its simple deployment and localization accuracy. It determines the location of the target from the new measurement CSI by collecting a training database that measures the CSI and using a machine learning classifier. However, we have found through experiments that even if the indoor environment does not change, the CSI fingerprint will be different from the CSI fingerprint in the database over time, and most of the CSI-based DFPWL fingerprinting method ignores this. To cope with the reduction in localization accuracy caused by the time-varying characteristic of CSI, we propose a novel transfer deep learning-based DFPWL system in this paper. It uses the CSI extracted from a single link to estimate the location of the target, neither requiring the target to wear any electronic equipment nor deploying a large number of APs and Monitor Devices. Unlike the other traditional CSI-based DFPWL fingerprinting approaches using the pre-processed CSI samples as fingerprints, our system utilizes the transfer deep learning (TDL) method to learn new feature representations from the CSI samples as fingerprints, which can simultaneously minimize the intra-class differences, maximize inter-class differences, and minimize the distribution differences between fingerprint database and test samples. Finally, the KNN algorithm is utilized to compare the test samples and the fingerprint database under the new feature representation to obtain the estimation location of the target. Experiment results show that our system can effectively improve localization accuracy compared to the other state-of-art, and can maintain stable localization accuracy for a long time without reacquiring the CSI fingerprint database.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call