Abstract
A promising technique to provide mobile applications with high computation resources is to offload the processing task to the cloud. Utilizing the abundant processing capabilities of the clouds, mobile edge computing enables mobile devices with limited batteries to run resource hungry applications and to save power. However, it is not always true that edge computing consumes less power compared to device computing. It may take more power for the mobile device to transmit a file to the cloud than running the task itself. This paper investigates the power minimization problem for the mobile devices by data offloading in multi-cell multi-user OFDMA mobile edge computing networks. We consider the maximum acceptable delay as QoS metric to be satisfied in our network. We formulate the problem as a mixed integer nonlinear problem which is converted into a convex form using D.C. approximation. To solve the converted optimization problem, we have proposed centralized and distributed algorithms for joint power allocation and channel assignment together with decision-making. Simulation results illustrate that by utilizing the proposed algorithms, considerable power savings can be achieved, e.g., about 60 percent for large bit stream size compared to local computing baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.