Abstract

We present a simple and reliable method for making electrical contacts to small organic molecules with thiol endgroups. Nanometer-scale gaps between metallic electrodes have been fabricated by passing a large current through a lithographically-patterned Au-line with appropriate thickness. Under appropriate conditions, the passage of current breaks the Au-line, creating two opposite facing electrodes separated by a gap comparable to the length of small organic molecules. Current-voltage characteristics have been measured both before and after deposition of short organic molecules. The resistance of single 1,4-benzenedithiol and 1,4-bezenedimethanedithiol molecules were found to be 9MΩ and 26MΩ, respectively. The experimental results indicate strong electronic coupling to the contacts and are discussed using a relatively simple model of mesoscopic transport. The use of electrodes formed on an insulating surface by lithography and electromigration provides a stable structure suitable for integrated circuit applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.