Abstract
In the case of a device simulation the BTE has to be solved self-consistently with the Poisson equation for the electric field [6.1]. To this end the RS is discretized with a tensor-product grid as described in the first section of this chapter. The material parameters, like the germanium concentration, doping, etc, are defined on this grid together with the boundary conditions. The germanium-dependent band edges are given in the next section. The discrete Poisson equation is presented next and in the fourth section the self-consistent solution of the BTE and Poisson is discussed. The extension to a nonlinear Poisson equation based on the zero-current approximation for one carrier type is given in the following section. Nonself-consistent MC simulations, where the electric field is calculated with a momentum-based method, are introduced in the sixth section. A method for the enhancement of rare events (e.g. impact ionization) is discussed in the next section. In the following two sections methods for the evaluation of terminal currents and inclusion of contact resistances are presented. Finally, the normalization of physical quantities is discussed in the last section of this chapter.KeywordsDevice SimulationIEEE Electron DeviceGermanium ContentMicroscopic QuantityTime Step LengthThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.