Abstract
Perovskite light-emitting diodes (LEDs) have emerged as a potential solution-processible technology that can offer efficient light emission with high color purity. Here, we explore the device physics of perovskite LEDs using simple analytical and drift-diffusion modeling, aiming to understand how the distribution of electric field, carrier densities, and recombination in these devices differs from those assumed in other technologies such as organic LEDs. High barriers to electron and hole extraction are responsible for the efficient recombination and lead to sharp build-up of electrons and holes close to the electron- and hole-blocking barriers, respectively. Despite the strongly varying carrier distributions, bimolecular recombination is surprisingly uniform throughout the device thickness, consistent with the assumption typically made in optical models. The current density is largely determined by injection from the metal electrodes, with a balance of electron and hole injection maintained by redistribution of electric field within the device by build-up of space charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.