Abstract

In this work, we investigate organic electrochemical transistors (OECTs) as a novel artificial electronic device for the realization of synaptic behavior, bioelectronics, and a variety of applications. A numerical method considering the Poisson-Boltzmann statistics is introduced to reproduce associated charge densities, electrostatics and switching properties of OECTs. We shed light on the working principle of OECTs by taking into account the ionic charge distribution in the electrolyte and incomplete ionization of the organic semiconductor describing the underlying electrochemical redox reaction. This enables analyzing the OECTs electrical performance as well as a simplified chemical properties via an electrical double layer, doping and de-doping of the OMIEC layer. We have fabricated, characterized, simulated and analyzed OECTs based on PEDOT:PSS, and we show that the proposed model reveals important properties of the device’s working mechanism. The model shows a good agreement with the experimental data of the fabricated devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.