Abstract
Wi-Fi-based human activity recognition has attracted broad attention for its advantages, which include being device-free, privacy-protected, unaffected by light, etc. Owing to the development of artificial intelligence techniques, existing methods have made great improvements in sensing accuracy. However, the performance of multi-location recognition is still a challenging issue. According to the principle of wireless sensing, wireless signals that characterize activity are also seriously affected by location variations. Existing solutions depend on adequate data samples at different locations, which are labor-intensive. To solve the above concerns, we present an amplitude- and phase-enhanced deep complex network (AP-DCN)-based multi-location human activity recognition method, which can fully utilize the amplitude and phase information simultaneously so as to mine more abundant information from limited data samples. Furthermore, considering the unbalanced sample number at different locations, we propose a perception method based on the deep complex network-transfer learning (DCN-TL) structure, which effectively realizes knowledge sharing among various locations. To fully evaluate the performance of the proposed method, comprehensive experiments have been carried out with a dataset collected in an office environment with 24 locations and five activities. The experimental results illustrate that the approaches can achieve 96.85% and 94.02% recognition accuracy, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.