Abstract

The present work illustrates how magnetic separation-based blood purification using ultra-strong iron nanomagnets can be implemented into an extracorporeal blood purification circuit. By this promising technique, today's blood purification may be extended to specifically filter high-molecular compounds without being limited by filter cut-offs or column surface saturation. Blood spiked with digoxin (small molecule drug) and interleukin-1β (inflammatory protein) was circulated ex vivo through a device composed of approved blood transfusion lines. Target-specific nanomagnets were continuously injected and subsequently recovered with the aid of a magnetic separator before recirculating the blood. Magnetic blood purification was successfully carried out under flow conditions: already in single-pass experiments, removal efficiencies reached values of 75 and 40% for digoxin and interleukin-1β, respectively. Circulating 0.5 L of digoxin-intoxicated blood in a closed loop, digoxin concentration was decreased from initially toxic to therapeutic concentrations within 30 min and purification extents of 90% were achieved after 1.5 h. Magnetic separation can be successfully implemented into an extracorporeal blood purification device. Simultaneous and specific filtering of high-molecular compounds may offer promising new therapeutic tools for the future treatment of complex diseases, such as sepsis and autoimmune disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.