Abstract

A novel double-gate (DG) tunneling field-effect transistor (TFET) with silicon–germanium (SiGe) Source is proposed to overcome the scaling limits of complementary metal–oxide–semiconductor (CMOS) technology and further extends Moore's law. The narrower bandgap of the SiGe source helps to reduce the tunneling width and improves the subthreshold swing and on-state current. Less than 60 mV/decade subthreshold swing with extremely low off-state leakage current is achieved by optimizing the device parameters and Ge content in the source. For the first time, we show that such a technology proves to be viable to replace CMOS for high performance, low standby power, and low power technologies through the end of the roadmap with extensive simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.