Abstract
Co-exploration of neural architectures and hardware design is promising due to its capability to simultaneously optimize network accuracy and hardware efficiency. However, state-of-the-art neural architecture search algorithms for the co-exploration are dedicated for the conventional von-Neumann computing architecture, whose performance is heavily limited by the well-known memory wall. In this article, we are the first to bring the computing-in-memory architecture, which can easily transcend the memory wall, to interplay with the neural architecture search, aiming to find the most efficient neural architectures with high network accuracy and maximized hardware efficiency. Such a novel combination makes opportunities to boost performance, but also brings a bunch of challenges: The optimization space spans across multiple design layers from device type and circuit topology to neural architecture; and the presence of device variation may drastically degrade the neural network performance. To address these challenges, we propose a cross-layer exploration framework, namely NACIM, which jointly explores device, circuit and architecture design space and takes device variation into consideration to find the most robust neural architectures, coupled with the most efficient hardware design. Experimental results demonstrate that NACIM can find the robust neural network with 0.45 percent accuracy loss in the presence of device variation, compared with a 76.44 percent loss from the state-of-the-art NAS without consideration of variation; in addition, NACIM achieves an energy efficiency up to 16.3 TOPs/W, 3.17x higher than the state-of-the-art NAS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.