Abstract

We demonstrate a scalable device architecture that facilitates indirect exchange between singlet-triplet spin qubits, mediated by an intermediate quantum state. The device comprises five quantum dots, which can be independently loaded and unloaded via tunneling to adjacent reservoirs, avoiding charge latch-up common in linear dot arrays. In a step towards realizing two-qubit entanglement based on indirect exchange, the architecture permits precise control over tunnel rates between the singlet-triplet qubits and the intermediate state. We show that by separating qubits by 1 um, the residual capacitive coupling between them is reduced to 7 ueV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.